
BioRxiv, 2025, pp. 1–15

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Stoichiometric analysis of microbial communities:
interrelating community function, structure and
biomass carrying capacity

Frank J Bruggeman,1,∗ Timothy Paez-Watson,2 Bas Teusink1

and Robbert Kleerebezem2

1Systems Biology Lab, A-Life, AIMMS, VU University, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands and 2Environmental

Biotechnology, TU Delft, Van der Maarsweg 9, 2629 HZ, Delft, The Netherlands
∗Corresponding author. f.j.bruggeman@vu.nl

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Microbial communities carry out important ecological functions. Their activities emerge from complex interactions
between species, often potentiated by metabolic traits. We lack a quantitative understanding of how these traits shape
community properties. Here, we present the theory for microbial communities, leveraging concepts from quantitative
microbial physiology. We derive formal conditions for the steady states of microbial communities. We express the relative
abundances of species (living and dead), the net metabolic conversion of a community, and the biomass carrying capacity
in terms of the metabolic stoichiometry of the species and their growth and death rates. We show how niche creation can
emerge from stoichiometric imbalances in cross-feeding communities. Finally, we discuss how relative species abundances
depend on the ATP stoichiometries of intracellular metabolism.
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Introduction

Microbial communities play important roles in the planet-

wide cycling of chemical elements, organismal health, and

biotechnology (foods, natural fermentations, wastewater

treatment) [1]. There is a need for a better understanding

of these systems to forecast their responses to environmental

changes (e.g. resilience and fragility) and to control their

functions in applications. This is in particular relevant now, as

many communities, and therewith their activities, are under

threat of climate change and pollution (incl. antibiotics),

and our economies need to make a shift to more bio-based

production systems [2].

Metagenomics methods revolutionised our insight into the

composition and genetic potential of the species making up

communities [3, 4]. It remains challenging however to predict

from this genomic knowledge emergent ecological mechanisms

and activities of microbes in communities, e.g. how abundant

they are, how fast they grow and die, what their nutrients and

products are, and with whom they preferentially interact and

why they do so [5, 6]. This prevents us from rationally steering

the behaviour of communities.

Systems biology, biotechnology and quantitative microbial

physiology have made great progress in our predictive

understanding of the physiology of single microbes in

controlled environments. This was primarily achieved by

integrating theoretical concepts, simulations and quantitative

data acquisition about, in particular, metabolic fluxes,

yields, and (metabolic) protein concentrations [7, 8, 9]. For

instance, we have currently an understanding of why and

when microbes, at least for the model microbes Escherichia

coli, Saccharomyces cerevisiae and Synechocystis sp., make

switches in metabolic strategies across conditions (and

growth rates) in general physiological terms such as optimal

biosynthetic resource allocation, growth-rate maximisation,

protein-expression constraints, and ATP yield on energy

substrates [10, 11, 12]. We expect that these methods could also

be adapted to microbiomes and thereby turned into powerful

predictors of the behaviors of microbes in communities,

given the dynamic environment that they partially generate

themselves via ecological feedback [13]. Such an endeavor could

effectively turn microbial ecology from a descriptive field into a

more predictive discipline, focusing on control and steering of

systems [2].

In this paper, we focus on the translation of yield

prediction methods based stoichiometric and thermodynamic

considerations, originally developed for studies of the

physiology of single microbes [7, 8, 9], into a microbial

ecology setting. Our methods allow for the prediction and

understanding of the relative abundances of species and the

net metabolic conversion and biomass carrying-capacity of the
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community, starting from the stoichiometric description of

the metabolic activity and death rates of each of the species

in the community. We limit this paper to the prediction of

these systemic properties of the community at steady states.

Steady states provide a natural starting point for understanding

also more complex scenarios involving dynamics, since (stable)

steady states serve as attractors in dynamic ecosystems [14]. In

a follow-up study, we will focus on the dynamic description of

microbial communities and these systemic quantities.

A central concept in this work is the macrochemical reaction

(stating chemical-element conversion), a concept with a long

history in quantitative microbial physiology and microbial

ecology [7, 8, 9]. One can think of the macrochemical reaction as

the (chemical-element balanced) reaction converting substrates

for growth and maintenance into biomass and byproducts,

with a microbial species as the catalyst. A macrochemical

reaction can be considered as a metabolic strategy of a

microbe, e.g. it can grow via glucose respiration yielding

carbon dioxide and water or via glucose fermentation giving

rise to fermentation products. Microbes may shift between

metabolic strategies when conditions change, affecting their

product formation, cross-feeding interactions, and downstream

metabolisms of other microbes [12]. Metabolic interactions

therefore set the relative abundances of microbes in addition to

their death processes. The entire set of macrochemical reactions

that a microbe can manifest is a measure of its metabolic

plasticity; nowadays, it can be computed from the microbe’s

genome through metabolic network reconstruction methods

[15, 16]. Macrochemical reactions can also be approximated

from bioenergetic considerations. We refer to Kleerebezem et

al. [17] for an overview of their derivations and applications in

industrial applications.

Here we use macrochemical reactions of microorganisms to

predict systemic stoichiometric properties of the community

they compose, and subsequently derive the macrochemical

reaction of the entire community (the community conversion)

and determine the amount of biomass per unit energy source

(the biomass carrying capacity).

Results

Macrochemical-equation based stoichiometric models
of microbial communities
Macrochemical reactions result from the precise protein

expression strategy of the species under the prevailing

conditions and the assumption of a steady-state metabolism

(balanced growth). Since during steady-state metabolism

all intracellular metabolite concentrations remain constant,

the chemical element composition of the growth substrates

must balance with the composition of the growth products,

including biomass. This elemental-conservation is captured

in the macrochemical reaction, similarly as in any chemical

reactions. The macrochemical equation can be calculated for

any steady-state metabolic network from its stoichiometric

matrix and steady-state flux distribution (see Appendix).

Alternatively, a macrochemical equation can be deduced from

experiments [7], estimated from chemical-element conservation

and thermodynamic relations [8], and from genome-scale

stoichiometric model of metabolism (Appendix; [18, 15, 19,

16]).

An example of a macrochemical reaction for the anaerobic

growth of S. cerevisiae on glucose with ethanol as the

Explainer box — Key definitions

Macrochemical equation

A single, balanced “overall” reaction that summarizes what

substrates are consumed and products (including biomass) are

produced for a given physiological state.

Steady state (balanced growth)

A state in which the conditions don’t change with time at the

scale considered: uptake, secretion, and biomass composition are

constant. In models, this corresponds to Sv = 0.

Yield

“How much you get per unit you use.” For product P from

substrate S: YP/S = ∆P/(−∆S) (e.g., gDW/g, mol/mol, or

C-mol/C-mol).

Community conversion

The community’s macrochemical equation obtained by

combining member species’ macrochemical equations according

to their contributions (weights).

Biomass carrying capacity

The maximum biomass that can be generated from a finite supply

of substrates, based purely on stoichiometric constraints from the

(community) macrochemical equation.

Metabolic plasticity

The ability of microbes to switch metabolic modes (e.g.,

respirative vs fermentative, alternate acceptors), changing yields

and by-products as the environment changes.

Stoichiometric matrix (S-matrix)

A bookkeeping table (metabolites × reactions) used to enforce

conservation and steady-state balances; it underlies Sv = 0.

Elemental balance and units

Macrochemical equations conserve elemental C, H, O, N (and

charge). Biomass is expressed with an empirical formula (e.g.,

CHaObNcPdSe). Yields can be reported on different bases, most

commonly g/g, mol/mol, or C-mol/C-mol.

Table 1. Explainer box with concise definitions for quick reference.

byproduct [7] is given by,

1.19C6H12O6 + 0.2NH
+
4 + 1.63H2O →

1 C-mol CH1.8O0.5N0.2 + 2.03C2H6O + 2.08HCO
−
3 + 2.28H

+

The coefficient in front of glucose (C6H12O6) specifies that 1.19

moles of glucose (denoted by G) is needed to make 1 C-mole

of biomass (CH1.8O0.5N0.2; denoted by X) and 2.03 moles of

ethanol (C2H6O; E) is made per C-mole of biomass. Thus, the

yield (denoted by Y) of biomass on glucose equals YX/G =

1.19−1 C-mol/mol and the yield of ethanol on biomass equals

YE/X = 2.03 mol/C-mol.

When the macrochemical reaction is written for 1 unit of

biomass, the rate of the macrochemical reaction is equal to the

specific growth rate (or per capita) (µ in C-mol/(C-mol hr))

of the associated species [9]. (We note that in some literature

the specific growth rate is denoted by qX or λ.) The amount

of biomass can also be quantified in terms of gram dry weight

instead of C-mole. The specific glucose uptake rate qG (in mol

glucose/(C-mol hr) and the specific ethanol production rate qE

(in mol ethanol/(C-mol hr)) are proportional to the growth

rate, i.e. qG = Y −1
X/G

µ and qE = YE/Xµ. The proportionality

constants are so called ‘yields’ denoted by YP/S for the yield

of product P on substrate S. Similar proportionality relations
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hold between the other compounds’ specific rates and growth

rate. The net flux of glucose uptake and ethanol production by

yeast, when it occurs at a biomass abundance X (in C-moles

or grams), equals JG = qGX and JE = qEX respectively.

A microbial community at steady state
Steady-state microbial communities are characterized by the

constancy (time invariance) of: i. all concentrations of

the extracellular metabolites, including those consumed and

produced by the consortium members; ii. consequently, the

growth rates and metabolic rates of the species, which

depend on those concentrations; iii. the death rates of

all the species, and iv. all intracellular concentrations

(e.g., of proteins and metabolic intermediates; to achieve a

state of “balanced growth”). Balanced growth and steady-

state communities can be experimentally achieved under lab

conditions (e.g., continuous cultures [20] and ‘approximated’

during the exponential phase in a batch cultivation [21]) and

are approximated in applications, e.g., in wastewater treatment

[22].

We define the relative abundance ϕi of a species i as its

absolute abundance Xi (in C-mole or grams) divided by the

total abundance of the community, XT =
∑NS

j=1 Xj , consisting

of NS species, i.e. ϕi = Xi/XT .

When the community is in steady state, all the relative

abundances of the species remain constant. This implies that

their rate of change equal zero. In the appendix we derive that

this rate of change equals,

dϕi

dt
=

(
d lnXi

dt
−
〈d lnX

dt

〉)
ϕi = 0. (1)

In this equation, ⟨ d lnX
dt ⟩ represents the average rate of change

of the log abundance of all the species defined as
∑NS

j=1 ϕj
d lnXj

dt

which equals d lnXT /dt, which we shown in the Appendix.

Thus, at steady state, all species obey the following relations,

d lnXi

dt
=

d lnXT

dt
=
〈d lnX

dt

〉
= µC , (2)

i.e., they all have the same net per-capita growth rate, which we

shall refer to as the community growth rate µC . This equation

always applies, at any steady state, regardless of the occurrence

of any other processes than growth that can alter the abundance

of the species, such as their inflow (dispersion), outflow or

death. Note that in many cases in nature, the net growth rate

of a community may turn out be zero and the nutrient fluxes

sustain both the maintenance requirements of the species and

counter their death rates.

The consideration of dead biomass
The consideration of the death rates of microorganisms forces

the consideration of growing biomass (active) and dead biomass

(inactive). Thus, the total biomass of a community or any of

its species equals the sum of the associated living and dead

biomass. We do not consider the recycling (growth on) dead

biomass, since we currently lack any understanding of the

stoichiometry of that process. This we see as an important open

problem in the field [23].

We denote the abundance of the metabolically-active living

biomass by ‘L’ and the dead biomass by ‘D’. The total

abundance of species i therefore equals Xi = Li + Di and the

total community biomass equals XT =
∑NS

i=1 Xi =
∑NS

i=1 Li +∑NS

i=1 Di.

We model the rates of change of the living, dead and total

biomass of a species as,

dLi

dt
= (µi − di)Li

dDi

dt
= diLi

dXi

dt
=

dLi

dt
+

dDi

dt
= µiLi (3)

with µi and di respectively as the per-capita growth and death

rate. Note that an extension of the theory, for instance, by

incorporating other processes such as dispersion or predation

would happen at this stage.

We introduce additional abundance fractions that can be

distinguished: the relative abundance of the living and dead

biomass of a species with respect to the total community

biomass (i.e. Li/XT and Di/XT ) and with respect to

the abundance of the species (i.e. Li/Xi and Di/Xi). In

the appendix, we show that the latter species-normalised

abundances relate the growth rate and the death rates of the

species in the following manner,

Li

Xi

= 1 −
di

µi

=
µC

µi

,
Di

Xi

=
di

µi

= 1 −
µC

µi

. (4)

Thus, the death and living fraction of a species in a steady-state

community can always be calculated from its total abundance

using its growth rate and death rate. Note also that 0 <

Li/Xi < 1 and 0 < Di/Xi < 1 such that 0 < di/µi < 1.

From equations 2, 3 and 16, we conclude that d lnXi/dt =

µi − di = µC . This means that the death rate of a species

can be determined from its (living and death) fractions and the

community growth rate.

Characteristics of a steady-state microbial
community
Summarizing the results from the previous section, a steady-

state microbial community is characterized by the following

properties:

1. The growth rate of the entire community equals

d lnXT /dt = µC .

2. The concentrations of the exchanged nutrients and the

physicochemical conditions are constant. Under these

conditions, the growth and death rates of all species are

also constant, and they satisfy µC = µi − di = ⟨µ − d⟩
(eq. 2).

3. Each species has a living and a dead fraction, given by

Li/Xi = 1 − µi/di = µi/µC and Di/Xi = 1 − Li/Xi.

4. The ratio of the living to dead abundance of a species equals

Li/Di = µC/di.

These relations are useful for determining the relative

abundances of living and dead biomass from experimental data.

Without considering the macrochemical equations of growth

for all species, it is not possible to determine the relative

abundances Xi/XT (i.e., ϕi). In the next sections, we address

this for different microbial communities. We begin with a simple

example, while the complete derivations are provided in the

Appendix.

The relative abundances of ethanol-exchanging yeast
and acetobacter in a 2-species community
To illustrate the procedure for expressing the relative

abundances of species in terms of the stoichiometric properties
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Fig. 1. A 2-species community composed of a yeast and acetobacter converting glucose into acetate, via ethanol. A. The metabolic network

formed by the cross-feeding of ethanol by a yeast and acetobacter strain is shown together with macrochemical equations. B. The relative abundances

of acetobacter is shown as function of its relative death rate.

of their metabolisms (i.e., their macrochemical equations), we

consider a 2-species community responsible for wine turning

sour [24]. This community consists of a yeast producing ethanol

from glucose and an acetobacter converting the ethanol into

acetic acid (Figure 1A).

At steady state, the ethanol production rate by the yeast

(JY,E) equals the ethanol consumption rate by the acetobacter

(JA,E), i.e., JY,E = JA,E . The net growth rates of both species

equal the community growth rate:

d lnXY

dt
= µY − dY =

d lnXA

dt
= µA − dA = µC .

In a batch-cultivation scenario, the biomasses XY , XA, and

XT would all increase exponentially with rate constant µC . In

a continuous culture (e.g., a chemostat), these rates would be

set by the dilution rate, and biomass abundances would remain

constant. The derivations that follow apply to all balanced-

growth states of this community, regardless of the cultivation

method.

The production rate JY,E of ethanol (E) by the yeast (Y )

is given by

JY,E = qY,EXY =
qY,E

µY

µY XY

= YE/XY
µY XY = YE/XY

(µC + dY )XY , (5)

where YE/XY
is the stoichiometric coefficient of ethanol in the

yeast’s macrochemical growth equation (2.03 in Figure 1A).

Similarly, the consumption rate JA,E of ethanol by the

acetobacter (A) is

JA,E = qA,EXA =
qA,E

µA

µAXA

= Y
−1
XA/E µAXA = Y

−1
XA/E(µC + dA)XA, (6)

where Y −1
XA/E

is the stoichiometric coefficient of ethanol

(5.6 in Figure 1) in the macrochemical growth equation for

acetobacter.

We could alternatively define JY,E = qY,ELY instead of

JY,E = qY,EXY , and similarly for acetobacter. This would

require expressing the specific production and consumption

rates in terms of living biomass only. However, because

living biomass is often not directly measurable in experimental

settings, we use total biomass here. This choice does not

qualitatively change the following derivations.

At steady state, the ethanol production rate by the yeast

balances the consumption rate by the acetobacter:

YE/XY
(µC + dY )XY = Y

−1
XA/E(µC + dA)XA. (7)

Dividing by the total abundance XT = XA + XY gives an

equation in terms of the relative abundances ϕY = XY /XT

and ϕA = XA/XT . Since these sum to one (ϕY + ϕA = 1), the

expression can be solved for the relative abundance of either
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species. For acetobacter:

ϕA = 1 − ϕY =
YE/XY

(
1 + dY

µC

)
YE/XY

(
1 + dY

µC

)
+ Y −1

XA/E

(
1 + dA

µC

) . (8)

We can parameterise equation (8) using YE/XY
= 2.03

and Y −1
XA/E

= 5.6, obtained from the macrochemical

growth equations of the two microbes (Figure 1A). This

parameterisation allows us to predict the relative abundance

of acetobacter as a function of its death rate, normalised by

the community growth rate (Figure 1B). The prediction aligns

with intuition: the relative abundance of acetobacter decreases

as its own death rate increases, and increases when the death

rate of the yeast rises.

Insights into the role of the death rate
Equation 8, or equivalently

ϕA

ϕY

=
YE/XY

(µC + dY )

Y −1
XA/E

(µC + dA)
,

shows that, for a given community growth rate µC , an increase

in the acetobacter death rate dA would require a higher

acetobacter growth rate µA = µC + dA, yet its relative

abundance would still decrease. Conversely, a higher yield of

ethanol per unit yeast biomass (YE/XY
) or a higher yield of

acetobacter biomass per unit ethanol (YXA/E) would increase

the acetobacter fraction.

So far, we have considered communities with µC > 0, where

µi > di for all species. In the special case µC = 0, the growth

and death rates are equal for each species (µi = di), leading to

a stationary biomass despite ongoing metabolic activity.

Growth conditions and nutrient limitation
The growth conditions for glucose and acetate must also be

considered.

First, consider a batch cultivation in which all nutrients

(including glucose and ammonium) are initially in great excess.

As the culture proceeds, nutrients are gradually depleted, and

the two microbes can reach a quasi-steady state together, as

described in the previous section.

Alternatively, in a continuous culture such as a chemostat,

all nutrients flow in and out at a dilution rate D [20]. In this

case, the effective loss rates become dY = D + d′
Y and dA =

D+ d′
A, where d′

Y and d′
A are the intrinsic death rates of yeast

and acetobacter, respectively. The community growth rate is

then µC = 0, with µY = D+d′
Y and µA = D+d′

A. Both species

must grow faster than the dilution rate to persist, and they will

not grow at equal rates if their intrinsic death rates differ. A

steady state is reached when all nutrient concentrations become

constant.

Both species consume ammonium (as evident from their

macrochemical equations in Figure 1), but this does not

necessarily imply direct competition for ammonium. For

example, if glucose is the limiting nutrient for the yeast and

ethanol is limiting for the acetobacter, then their growth

rates are determined by the concentrations of these respective

energy sources. This occurs when the concentrations of glucose

and ethanol are close to their Monod constants [21], while

the ammonium concentration is much higher than its Monod

constant and thus in excess. In such cases, the community

is limited by the energy sources rather than by nitrogen

availability.

The consideration of maintenance requirements
Pirt’s interpretation of maintenance energy requirements for

yeast and acetobacter can also be incorporated into the

equations used to determine the relative abundances of the

species [9].

We start from the steady-state requirement that the ethanol

production flux equals the ethanol consumption flux:

qE,Y XY =
[
Y

−1
XA/E(µC + dA) + mS,A

]
︸ ︷︷ ︸

qE,A

XA, (9)

where mS,A is the maintenance requirement of acetobacter, and

qE,A = Y −1
XA/E

µA + mS,A according to Pirt’s interpretation.

The maintenance requirement of yeast enters via the

biomass yield of yeast on glucose, YXY /G:

qE,Y XY =
qE,Y

qG,Y

qG,Y XY

= YE/G

[
Y

−1
XY /G(µC + dY ) + mS,Y

]
XY , (10)

where mS,Y is the maintenance requirement of yeast and

qG,Y = Y −1
XY /G

µY +mS,Y is Pirt’s equation for glucose uptake.

Combining these maintenance-extended expressions yields

the following relation for the relative abundance of acetobacter:

ϕA =
YE/G

[
Y −1
XY /G

(
1 + dY

µC

)
+

mS,Y

µC

]
Y −1
XA/E

(
1 + dA

µC

)
+

mS,A

µC
+ YE/G

[
Y −1
XY /G

(
1 + dY

µC

)
+

mS,Y

µC

] .
(11)

This expression reduces to equation 8 when the maintenance

requirements are zero. Maintenance requirements influence

relative abundances in a manner similar to death rates:

increasing the maintenance requirement of a species decreases

its relative abundance. Thus, incorporating maintenance does

not qualitatively alter the insights obtained so far.

The net conversion of the yeast–acetobacter
community
At steady state, the net growth rates of yeast (µY − dY ) and

acetobacter (µA − dA) both equal the community growth rate

µC . The rates of the macrochemical reactions for yeast and

acetobacter are therefore µY XY and µAXA, respectively.

For each reactant in the two macrochemical equations, the

net production or consumption rate by the community equals

the reaction rate multiplied by the stoichiometric coefficient of

that reactant. For ethanol, these net rates cancel (produced

by yeast, consumed by acetobacter). For other reactants, such

as glucose, acetate, biomass, and ammonium, there is a net

community-level production or consumption at steady state.

The stoichiometry of the entire community at steady state is

described by the macrochemical equation of the community,

which we call the ’community conversion’. This can be obtained

directly from the macrochemical equations of the two species.

The derivation proceeds as follows. The two macrochemical

equations occur at rates µY XY and µAXA. For example, the

net consumption rate of ammonium by the community is:

−YN/Y µY XY − YN/A µAXA.

This rate must equal the rate of the community conversion

(µCXT ) multiplied by the stoichiometric coefficient of
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ammonium in that equation (YN/C):

−YN/Y µY XY − YN/A µAXA = YN/C µCXT .

Thus, the ammonium coefficient in the community macrochemical

equation is:

YN/C = −YN/Y

µY

µC

ϕY − YN/A

µA

µC

ϕA.

The same logic applies to all reactants in the net conversion

equation. Cross-fed metabolites cancel out, and biomass terms

require incorporating death rates.

In general, the macrochemical equation for the entire

community (MEQC) can be expressed in terms of the species-

level macrochemical equations (MEQY and MEQA) as:

MEQC

XTµC

= MEQY

µY

µC

ϕY + MEQA

µA

µC

ϕA

− CH1.8O1.5N0.2

dY

µC

ϕY − CH1.8O1.5N0.2

dA

µC

ϕA.

(12)

When the death rates are negligible, this reduces to the

following macrochemical reaction for the community:

0.9C6H12O6 + 0.2NH
+
4 → CH1.8O1.5N0.2 + 2.1C2H3O

−
2

+ 2.2H
+

+ 0.05HCO
−
3 + 0.4H2O.

(13)

This equation constitutes the net conversion of the community—its

“ecological service.”

A more general and compact derivation of the community

net conversion, applicable to any community, is provided in the

Appendix using a matrix formulation.

Stoichiometric explanation of relative species
abundances in terms of ATP metabolism
In the yeast–acetobacter community considered above, the

biomass ratio is proportional to the product of two yield

coefficients:
ϕA

ϕY

∝ YXA/E YE/XY
.

An increase in either coefficient changes the abundance ratio.

For example, the yeast could increase YE/XY
by producing

more ethanol per unit biomass. This yield depends on the

ATP requirement for biomass synthesis via fermentation: the

ATP needed to assemble all macromolecules from central

carbon metabolism precursors, minus the ATP produced during

precursor biosynthesis. A more detailed treatment of this is

given in the Appendix.

To generalise these ideas, consider a theoretical three-species

community that sequentially converts a high-energy substrate

S1 into a low-energy product S4:

S1
microbe1−−−−−−→ S2

microbe2−−−−−−→ S3
microbe3−−−−−−→ S4.

Here S1, S2, and S3 serve as both carbon and energy sources

for the three species. For example, S1 could be glucose, S2

ethanol, S3 acetate, and S4 methane or carbon dioxide. Each

substrate is partly converted into biomass and partly into the

next catabolic product in the chain. Let X1, X2, and X3 denote

the biomasses of the three species.

At steady state, the production and consumption rates of

S2 and S3 must balance. This yields:

X1

X2

=
YS2/X2

µ2

YS2/X1
µ1

,
X2

X3

=
YS3/X3

µ3

YS3/X2
µ2

.

Here YS2/X1
and YS3/X2

denote the amount of catabolic

product formed per unit biomass, while YS2/X2
and YS3/X3

denote the amount of catabolic substrate required to form one

unit of biomass.

All four yield coefficients can be linked to a common

metabolic principle. A carbon–energy source (e.g., glucose) is

used for:

1. Energy generation via ATP synthesis, and

2. Biosynthesis of precursors (e.g., pyruvate, glucose-

6-phosphate) that are assembled into monomers for

macromolecules (nucleic acids, amino acids, lipids).

Precursor biosynthesis can either generate ATP (e.g.,

pyruvate from glycolysis yields 2 ATP/glucose) or consume

ATP (e.g., nucleotide synthesis from glucose-6-phosphate

requires 1 ATP/glucose). The total ATP demand for biomass

formation equals the ATP needed to convert precursors into

macromolecules minus the ATP generated during precursor

biosynthesis. The residual ATP demand must be met by

catabolism, producing the next metabolite in the chain (S2 for

microbe 1, S3 for microbe 2). The yields YS2/X1
and YS3/X2

are therefore determined by this ATP balance, which in turn

controls the steady-state abundances of X2 and X3.

In summary, the yield coefficients in macrochemical

equations reflect the intracellular balance between catabolic

ATP yields and anabolic ATP demands. Fermentation-product

yields can be interpreted at coarse-grained level from this

perspective – known as the “ATP method” for deriving

macrochemical equations [25]. This framework directly links

intracellular metabolism to relative species abundances in

steady-state communities.

Stoichiometric imbalance and spontaneous niche
creation in simple cross-feeding communities
So far, we have only considered unidirectional cross-feeding.

We now turn to bidirectional cross-feeding, where two species

coexist and each produces a metabolite consumed by the other.

Stoichiometric analysis predicts that, in general, one of these

cross-fed metabolites will accumulate, creating a niche for a

third species. We refer to this phenomenon as ’stoichiometric

imbalance’. Although it is easiest to illustrate with two species,

the same reasoning applies to many-species communities.

Consider two species, A and B: species A produces

metabolite a and consumes metabolite b; species B produces

b and consumes a. In addition to cross-feeding, we allow for

outflow of both a and b from the system. At steady state, the

metabolite balances are:

da

dt
= 0 = Ja,A − Ja,B − Ja,

db

dt
= 0 = Jb,B − Jb,A − Jb,

where Ja,A is the production rate of a by species A, Ja,B is the

consumption rate of a by species B, and Ja is the outflow rate of

a (similarly for b). Using the approach from previous sections,

these fluxes can be expressed in terms of yields, growth rates,
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and biomass:

0 = Ya/A(µC + dA)XA︸ ︷︷ ︸
Ja,A

−Y
−1
B/a(µC + dB)XB︸ ︷︷ ︸

Ja,B

−Ja,

0 = Yb/B(µC + dB)XB︸ ︷︷ ︸
Jb,B

−Y
−1
A/b(µC + dA)XA︸ ︷︷ ︸

Jb,A

−Jb.

Defining XT = XA + XB , ϕA = XA/XT , and ϕB =

XB/XT , the a-balance gives:

ϕA =
Ja + Y −1

B/a
(µC + dB)

Ya/A(µC + dA) + Y −1
B/a

(µC + dB)
,

while the b-balance gives:

ϕA =
Jb + Yb/B(µC + dB)

Y −1
A/b

(µC + dA) + Yb/B(µC + dB)
.

In steady state, these two expressions for ϕA must be equal.

Two cases arise:

• Stoichiometrically balanced: Ja = Jb, which can include

Ja = Jb = 0. In this special case, the elemental composition

of a and b and the metabolic demands of A and B

align perfectly, so neither metabolite accumulates. This is

expected to be rare.

• Stoichiometrically imbalanced: Ja ̸= Jb, which we

expect to be the general case. Here, one metabolite

accumulates relative to the other.

In the imbalanced case, natural selection is expected to drive

the community toward maximal growth. Under this condition,

one overflow rate (Ja or Jb) will approach zero. If Ja = 0,

the system is A-limited, Jb > 0, and a niche exists for a third

microbe that can grow on b. Conversely, if Jb = 0, the system

is B-limited and a niche exists for a microbe that can grow on

a.

In summary, stoichiometric reasoning alone predicts that

bidirectional cross-feeding typically leads to the accumulation

of one cross-fed metabolite, thereby creating a new ecological

niche.

The carrying capacity and the net metabolic
conversion of a large community
In figure 2, a community consisting of five microbial species is

shown. Together they convert glucose (e.g. deriving from plant

litter) into carbon dioxide, methane and biomass. The species

feed on each other’s waste products, via cross feeding of acetate,

hydrogen, butyrate and carbon dioxide. A representative

macrochemical reaction of each of the microbial species is shown

and were obtained from Smeaton & van Capellen [26].

In the Appendix we provide a complete stoichiometric

analysis of the microbial community shown in figure 2. We

show how the species fraction can be expressed in terms of the

stoichiometric coefficients of the macrochemical equations of

the species, the net fluxes of nutrient in and out of the system,

the community growth rate, and the death rates of all the

species. This summarises all the methods in a matrix formalism

that is applicable to more complex cases then those considered

so far. This analysis also involves a numerical example, which

leads to the following community conversion at steady state:

glucose, ammonium and sulphate are converted into biomass,

butyrate, method, carbon dioxide, and hydrosulfide,

0.72 C6H12O6 + 0.2 NH+
4 + 0.72SO2−

4 →

CH1.8O0.5N0.2 + 0.29 C4H7O
−
2

+0.19 CH+
4 + 1.96H2O + 1.96CO2 + 0.72HS−. (14)

In this case, four of the five species C. butyricum, D. vulgaris,

D. multivorans, and M. barkberi are active at, respectively, the

following biomass fractions:

ϕcb = 0.67, ϕdv = 0.22, ϕdm = 0.089, ϕmb = 0.015.

Glucose functions here as the energy source and 0.72 mole of

it is needed to make 1 gram biomass. The carrying capacity

of the environment equals therefore 1/1.9 mole biomass per

mole glucose. This solution was obtained using community

flux balance analysis [27] – since more fluxes occur in the

community than stead-state flux balances. We note that since

the community makes butyrate (and methane) a niche still

exists for a butyrate (and methane) consumer to fill.

Discussion

It seems that we are still far from a quantitative understanding

of microbial communities such that we can predict and

explain why particular species are carrying out specific

metabolisms. A first step in that direction is understanding

the relations between the metabolic stoichiometry of microbial

growth (macrochemical equations), the relative abundance of

species, and the net metabolic conversion of a steady-state

community. Here we presented this understanding and provided

various extensions such as the maintenance requirement, living

and dead biomass, stoichiometric imbalance, and various

community topologies (incl. those analysed in the Appendix).

Beyond providing a conceptual understanding, the balance

equations derived here can be applied directly to experimental

data. For example, relative abundances can be inferred from

measured fluxes, especially when combined with biomass

measurements and stable isotope probing (SIP) proteomics

[28, 29]. SIP proteomics can help link specific metabolic

activities to individual species, and the framework can be

integrated with community flux balance analysis in cases where

the system of equations is underdetermined due to limited data.

Many models in microbial ecology, such as the generalised

Lotka Volterra or the resource-consumer models, do not

consider stoichiometry. These phenomenological models are

particularly useful for communities of poorly characterised

species or when the focus is on abundance dynamics rather

than precise metabolic activities – for instance, the dynamics

of their abundances in terms of generalised species-species

interactions [30]. Cases also exist where the interest is primarily

in terms of the consequences of the metabolic capacities and

interactions between the species. For example, how they

concertedly maintain a particular metabolic ecological service

such as, for instance, the anaerobic conversion of plant litter

into greenhouse gases [6]. Then stoichiometric models are more

relevant than more phenomenological models.

Stoichiometric models can describe certain phenomena

better than non-stoichiometric models. A straightforward

example occurs for the exchange of two nutrients a and b

between two species A and B. A makes a and feeds on b

made by B, which feeds on a. (For instance, a is acetate and

b is an amino acid.) In such a cross-feeding exchange it will
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Fig. 2. The metabolism and ecological service of a community of five microorganisms in terms of their macrochemical equations. The

macrochemical equations of five microorganisms are shown that together convert glucose into methane, biomass and carbon dioxide, via the metabolic

intermediates: acetate, hydrogen, butyrate and acetate. This net metabolic conversion of the microbial community, it’s ecological service, is shown as a

macrochemical equation of the community. The ecological service can be computed from the relative abundances of the species and the macrochemical

equations of the community using the method outlined in the main text. Chemical compounds: C6H12O6, (glucose), NH+
4 (ammonium), CH1.8O0.5N0.2

(biomass), CH4 (methane), H2O (water), CO2 (carbon dioxide), C2H3O
−
2 (acetate), SO3−

4 (sulphate), HS− (hydrosulfide).

generally be so that the system settles to a steady state with

equal specific growth rates of the two species and that one of the

exchanged nutrients remains constant by a balanced production

and consumption, while the other accumulates (stoichiometric

imbalance; see results section). This accumulation can not

be predicted by a non-stoichiometric model of the microbial

community. Whether a or b accumulates depends on the precise

stoichiometry of A’s and B’s macrochemical equation. If a

accumulates, then other species can invade the community

then when b accumulates. Stoichiometric models are needed

to distinguish between these scenarios.

Finally, although we accounted for the presence of living

and dead biomass, we did not model the recycling of dead

biomass components. This extension was omitted because

the stoichiometry of biomass recycling is currently too

poorly understood, but it could be incorporated once better

quantitative information becomes available [23].
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Derivation of the macrochemical reaction of a
steady-state metabolic network

Consider a metabolic network with stoichiometric matrix N at

steady state such that its flux vector J obeys

NJ = 0.

The macrochemical equation (MEQ) that corresponds to this

state of the metabolic network can be obtained from

MEQ = m
T
NY

with: m is the vector with metabolite names (ordered according

to the row ordering of the stoichiometric matrix) and Y as the

vector that results after dividing all entries of J by the value of

the growth rate (often one of the entries of J). The MEQ can

be written in its macrochemical reaction form by adding all the

negative terms left of a chemical reaction arrow and those that

are positive to its right-hand side.

Derivation of equations appearing in the main
text

Derivation of equation 1
Given ϕi(t) = Xi/XT , we obtain

d lnϕi

dt
=

d lnXi

dt
−

d lnXT

dt

=
d lnXi

dt
−

1

XT

d

dt

NS∑
i=1

Xi

=
d lnXi

dt
−

NS∑
i=1

1

XT

d

dt
Xi

=
d lnXi

dt
−

NS∑
i=1

ϕi

d

dt
lnXi

=
d lnXi

dt
−
〈 d

dt
lnX

〉
with

〈
d
dt lnXi

〉
=
∑NS

i=1 ϕi
d
dt lnXi, i.e. the average d lnXi/dt.

Derivation of equation 16
The relative abundances Li/XT , Di/XT and Xi/XT =

Li/XT + Di/XT are all fixed at any steady state of the

community. This implies the following relations:

d

dt
ln

Li

XT

=
d

dt
lnLi −

d

dt
lnXT = µi − di −

d

dt
lnXT

d

dt
ln

Di

XT

=
d

dt
lnDi −

d

dt
lnXT = di

Li

Di

−
d

dt
lnXT

d

dt
ln

Xi

XT

=
d

dt
lnXi −

d

dt
lnXT

=
1

Xi

dLi

dt
+

1

Xi

dDi

dt
−

d

dt
lnXT

= µi
Li

Xi

−
d

dt
lnXT .

Hence, the following relations hold for the community growth

rate equals

µC =
d

dt
lnXT = µi − di = di

Li

Di

= µi
Li

Xi

. (15)

From these relations, we can deduce that

Li

Xi

= 1 −
di

µi

,
Di

Xi

=
di

µi

. (16)

These fractions sum to 1, since Xi is defined as the sum of

Li + Di.

We already showed that the community growth rate µC

equals d lnXT /dt and the mean value of d lnXi/dt. An

expression of this mean can be derived,

µC =
d

dt
lnXT =

∑
i

1

XT

dLi

dt
+
∑
i

1

XT

dDi

dt

=
∑
i

1

XT

(µi − di)Li +
∑
i

1

XT

diLi

=
∑
i

1

XT

µiLi

=
∑
i

Xi

XT

µi

Li

Xi

(using eq. 15)

=
∑
i

ϕi(µi − di)

= ⟨µ − d⟩.

Thus, this last result and equation 15 indicate that the

growth rate of each species equals, at any steady state of the

community,

µi = µC + di,

which implies that the concentrations of the extracellular

nutrients and products – of which are toxins for other species

– which impact the growth rate of species are eventually such

that this relation holds. E.g. in the simplest case the growth

rate of a species depends only on the concentration of a single

limiting nutrient concentration according to a Monod equation.

Since the metabolic activity of a species is proportional to

its growth rate and its energy-maintenance rate, the growth

rate sets the net uptake and production rates of nutrients and

products of one particular species. If a microbe cannot achieve

the community growth rate it goes extinct.

Finally, using µC = µi − di and equation 16, we conclude

that

Li

Xi

=
µC

µi

,
Di

Xi

= 1 −
µC

µi

.
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Derivation of the catabolic product and biomass
yield expression in terms of ATP yields

We limit ourselves to a carbon source as energy source,

from which a catabolic product is made as well as precursor

molecules, consumed during the synthesis of amino acids,

nucleic acids, and lipids.

Consider the following simplified representation of a 2-

species community

CS
microbe 1−−−−−−−→ CP

microbe 2−−−−−−−→ .

CP is the catabolic product of microbe 1, made from its carbon

source CS. CP is also the carbon source for microbe 2.

At steady state of the community, the net production and

consumption rate of the catabolic product balances

q
1
CPX1 = q

2
CPX2 ⇒ µ1Y

1
CP/X1

X1 = µ2Y
2
CP/X2

X2

with Y 1
CP/X1

=
q1
CP

µ1
as the yield of catabolic product on

biomass of microbe 1 (both made from CS) and Y 2
CP/X2

=
q2
CP

µ2
, which is best represented as the inverse yield of biomass

of microbe 2 on the catabolic product of microbe 1, i.e.

(Y 2
X2/CP )−1. These yields are net stoichiometric properties

of the entire metabolic networks of these two microbes, are

stoichiometric coefficients of the macrochemical reactions of the

two species, and are each calculable with flux balance analysis

from a genome-scale stoichiometric model of each of the species,

from experiments or from phenomenological models.

The last equation shows that

X2 = Y
2
X2/CPY

1
CP/X1

µ1

µ2

X1 (17)

and that therefore the biomass abundance of the second

microbe depends on the yield of catabolic product on biomass

of microbe 1 and the biomass yield of microbe 2 on this same

compound. Next, it will be shown that both yield can be written

in the ATP metabolism of those two microbial species.

Next, we will express the yield of catabolic product on

biomass Y 1
CP/X1

and the yield of biomass on a catabolic

substrate Y 2
X2/CP in terms of the ratio of the amount of ATP

produced during catabolic-product formation over the amount

produced during precursor metabolism of both species.

The total specific carbon source flux uptake rate qCS , in

terms of CS for microbe 1 and in terms of CP for microbe 2,

equals the sum of the carbon flux towards catabolic product

(CP ) and precursor (Pre) metabolism,

qCS = q
CS→CP
CS + q

CS→Pre
CS .

Precursor metabolism involves the synthesis of metabolites

from the carbon source that act as precursor for the biosynthesis

of lipids, nucleic acids and amino acids. For instance, alanine

is made from the precursor metabobolite pyruvate on glucose

growth and yields 1 ATP per pyruvate, while the glucose-

6-phosphate, a precursor for nucleic acid biosynthesis via

the pentose phosphate pathway, requires 1 ATP per glucose-

6-phosphate. When a precursor is made then no catabolic

product is made, e.g. no ethanol, acetate, or formate,

results from pyruvate when it is used as precursor. Catabolic-

product formation is always accompanied by a net gain in

ATP. The amount of catabolic product made depends on the

ATP requirement that remains after subtraction of the ATP

requirement per unit biomass by the amount made during

precursor biosynthesis (this amount can be negative).

The ratio of carbon flow towards precursors versus catabolic

product is defined by the following ratio of specific flux values,

ϕ
Pre/CP
CS =

qCS→Pre
CS

qCS→CP
CS

.

Both microbes synthesize their ATP as part of the conversion

of carbon source to catabolic product (CS → CP ) and during

precursor formation from carbon source (CS → Pre),

qATP = q
CS→CP
ATP + q

CS→Pre
ATP

= n
ATP
CS→CP q

CS→CP
CS + n

ATP
CS→Preq

CS→Pre
CS (18)

The specific production rate of catabolic product is defined by,

qCP = n
CP
CS q

CS→CP
CS .

The ‘n’ stoichiometric coefficients are properties of the

metabolic pathways that two microbes use to make catabolic

products and precursor metabolites from catabolic substrates.

Next, we need to determine Y 2
X2/CP , which is a yield of

biomass of microbe 2 on its carbon source,

YX/CS =
µ

qCS

=
µ

qATP

qATP

qCS

= YX/ATP

qATP

qCS

(19)

We assume that we know the yield of biomass on ATP

(i.e. YX/ATP , which is also quite conserved across microbes),

and quantifies how much ATP is needed to make 1 unit of

biomass. Finally, we determine the yield of ATP per unit

carbon source qATP

qCS
in terms of the ratio of ATP made during

precursor biosynthesis over that made during catabolic product

formation,

qATP

qCS

=
nATP

CS→CP qCS→CP
CS + nATP

CS→Preq
CS→Pre
CS

qCS→CP
CS + qCS→Pre

CS

=
1 + ϕ

Pre/CP
CS

nATP
CS→Pre

nATP
CS→CP

1 + ϕ
Pre/CP
CS

n
ATP
CS→CP (20)

We still need to determine the yield of catabolic product on

biomass, i.e. for microbe 1: Y 1
CP/X1

. The yield of a catabolic

production of biomass can also be expressed in terms of whole-

cell ATP stoichiometries,

YCP/X =
qCP

µ
=

qCP

qATP

qATP

µ
=

qCP

qATP

(YX/ATP )
−1

. (21)

Next, we express qCP

qATP
in terms of the stoichiometric coefficients

of intracellular metabolism,

qCP

qATP

=
nCP

CS qCS→CP
CS

nATP
CS→CP qCS→CP

CS + nATP
CS→Preq

CS→Pre
CS

=
1

1 +
nATP

CS→Pre

nATP
CS→CP

ϕ
Pre/CP
CS

nCP
CS

nATP
CS→CP

(22)

With those four relations (eq. 19, 20, 21, and 22), we can

express the ratio of biomass abundances in terms of the ATP -

stoichiometries of the metabolism of the two species, by their
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substitution in equation 17,

X2 = Y
2
X2/CPY

1
CP/X1

µ1

µ2

X1

= Y
2
X2/ATPY

2
ATP/CP︸ ︷︷ ︸

Y 2
X2/CP

,eq.19

Y
1
CP/ATP (Y

1
X1/ATP )

−1︸ ︷︷ ︸
Y 1

CP/X1
,eq. 21

µ1

µ2

X1

∝
1

1 +
n1,ATP

CS→Pre

n1,ATP
CS→CP

ϕ
1,Pre/CP
CS

(23)

What becomes clear is that when microbe 1 meets its

ATP demand for macromolecule biosynthesis from precursor

molecules predominantly via precursor biosynthesis, hence

ϕ
1,Pre/CP
CS is high, then it does not make much CP per unit

biomass and, hence, the relative biomass abundance of species 2

is low. Thus, biomass abundance of the second species depends

on the ATP stoichiometry of microbe 1 that makes the catabolic

substrate of the microbe 2.

Illustration of the calculation of relative species
abundances and community conversion

Calculation of the relative species abundances of a
steady state community
The relative species abundances are determined from the

steady-state condition of the metabolites that are exchanged

between the species, which are also allowed to flow in or out of

the community. We will take anaerobic digestion of glucose by

a microbial community (shown in figure 2) as an example.

This community has four exchanged (variable) metabolites

(i.e. acetate (ac), carbon dioxide (co), butyrate (bu) and

hydrogen (h2); we consider glucose fixed) and five species

(Clostridium butyricum (cb), Methanosarcina barkeri (mb),

Desulfococcus multivorans (dm), Methanococcus maripaludis

(mm), and Desulfovibrio vulgaris (dv)).

Since we have four variable metabolites, we have four flux

balance equations that hold at steady state,

qac,cbXcb − qac,dvXdv − qac,mbXmb = Jac

qh2,cbXcb − qh2,mmXmm − qh2,dvXdv = Jh2

qbu,cbXcb − qbu,dmXdm = Jbu

qco,cbXcb − qco,mmXmm − qco,dvXdv + qco,dmXdm

+qco,mbXmb = Jco

The term on the left are the production and consumption rates

of the species while the fluxes on the left (i.e. the J’s) are

the exchange fluxes with the environment. If glucose would be

considered flowing into the environment, instead of fixed as it

is now, then one more balance for glucose would have added.

Next, we introduce yields and relative species abundances.

The yields are introduced by multiplying and dividing each

term in the previous equations by the associated growth rate of

the species, e.g. qac,cbXcb → qac,cb

µcb
µcbXcb = Y ac

cb µcbXcb. The

relative species abundances are introduced by division of all

terms by the total biomass abundance XT , i.e. Y ac
cb µcbXcb →

Y ac
cb µcb

Xcb

XT
= Y ac

cb µcbϕcb. The resulting set of equation can

be couched in a matrix equation to which we also add the

conservation relation for the species fractions.

This equation can be simplified, by including the condition

that the growth rate of each species equals the community

growth rate (µC) plus the death rate of the species, e.g. µcb =

µC + dcb. We assume that we either know the growth rate of

each of species or the community growth rate and the death rate

of each species. From the macrochemical equations we obtain

the yield coefficients. This allows for the determination of the

species fractions by solving the previous set of linear equations

Calculation of the community conversion (the
ecological service) of a steady state community
To determine the community conversion – the macrochemical

equation – of the steady-state community, we start from the

steady-state flux vector f of the community,

f =

(
µcbϕcb µmmϕmm µdvϕdv µdmϕdm µmbϕmb Jac Jh2

Jbu Jco dcbϕcb dmmϕmm ddvϕdv ddmϕdm dmbϕmb

)
(24)

We also require the names of all the nutrient concentrations

and species abundances occuring in the system. These we

collect in a vector ordered in the same order as the rows of

the stoichiometric matrix. Thus vector we refer to as n,

n =

(
glc nh4 ch4 h2 so4 ac h2

bu co Xcb Xmm Xdv Xdm Xmb

)
(25)

We also need to matrix S containing the stoichiometric

coefficients of all the processes that occur in the community.

The following multiplication then gives the macrochemical

equation MEQ of the microbial community or the net

conversion of the community.

MEQ = n
T
Sf .

Numerical example anaerobic digestion
The numerical example of the anaerobic digestion community

and leading to the macrochemical equation, shown in figure 2,

corresponds to the following case. The relative abundances are:

ϕcb = 0.67, ϕmm = 0, ϕdv = 0.22, ϕdm = 0.089, ϕmb = 0.015.

The fluxes are: Jglc,i = 1, Jnh4,i = 0.28, Jbu,o = 0.40,

Jch4,o = 0.26, and JCO2,o = 2.73, JH2O,o = 2.7, JHS,o = 1

and JSO4,i = 1 (with ‘i’ denoting inflow and ‘o’ outtflow

out of the community). This solution was obtained with

linear programming (maximisation of the growth rate of the

community).

Additional theoretical examples

The carrying capacity and the net metabolic
conversion for a 2-species community
The description of a two species community with the

exchange of a single metabolite, similar to the yeast and

acetobacter community, can be done in general terms using

two macrochemical reactions and two death processes as shown

in Figure 3. For simplicity, we only focus on the reactants

that matter for the example (the nutrients A, B and C (e.g.

glucose, ethanol and acetate) and the biomasses X1 and X2).

Those could for instance be referring to the carbon (and energy)

sources and products and do not consider a maintenance

requirement.

In figure 3, the stepwise procedure for the determination of

the community conversion of a community is shown, starting

from the macrochemical reactions of its species.



Stoichiometric analysis of microbial communities 13



Y ac
cb µcb 0 −

(
Y dv
ac

)−1
µdv 0 −

(
Y mb
ac

)−1
µmb

Y h2
cb µcb −(Y mm

h2 )−1 µmm −
(
Y dv
h2

)−1
µdv 0 0

Y bu
cb µcb 0 0 −

(
Y dm
bu

)−1
µdm 0

Y co
cb µcb −(Y mm

co )−1 µmm −
(
Y dv
co

)−1
µdv Y co

dm µdm Y co
mb µmb

1 1 1 1 1





ϕcb

ϕmm

ϕdv

ϕdm

ϕmb


=



Jac/XT

Jh2/XT

Jbu/XT

Jco/XT

1



Fig. 4. Community mixing relation for species fractions ϕ with exchange fluxes J• (per XT ).

S =



−
(
Y cb
glc

)−1
0 0 0 0 0 0 0 0 0 0 0 0 0

−
(
Y cb
nh4

)−1
−(Y mm

nh4 )−1 −
(
Y dv
nh4

)−1
−
(
Y dm
nh4

)−1
−
(
Y mb
nh4

)−1
0 0 0 0 0 0 0 0 0

0 Y ch4
mm 0 0 Y ch4

mb 0 0 0 0 0 0 0 0 0

0 0 Y hs
dv Y hs

dm 0 0 0 0 0 0 0 0 0 0

0 0 −
(
Y dv
so4

)−1
−
(
Y dm
so4

)−1
0 0 0 0 0 0 0 0 0 0

Y ac
cb 0 −

(
Y dv
ac

)−1
0 −

(
Y mb
ac

)−1
−1 0 0 0 0 0 0 0 0

Y h2
cb −(Y mm

h2 )−1 −
(
Y dv
h2

)−1
0 0 0 −1 0 0 0 0 0 0 0

Y bu
cb 0 0 −

(
Y dm
bu

)−1
0 0 0 −1 0 0 0 0 0 0

Y co
cb −(Y mm

co )−1 −
(
Y dv
co

)−1
Y co
dm Y co

mb 0 0 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 −1


Fig. 5. Stoichiometric matrix S for the community processes.

The first step is to construct the stoichiometric matrix of the

metabolism of the community. This matrix has four columns

corresponding to the two growth and two death reactions and

five rows, i.e. the three nutrients and the two biomasses.

The derivation of the community conversion requires first the

derivation of the species fraction (step 2). This is done from

the steady-state balances for the concentration of the variable

nutrients in the network and the conservation relationship for

the fraction. In this case we have only one balance equation, i.e.

for B. After the determination of the fractions, the community

conversion is obtained by multiplying the stoichiometric matrix

determined in step 1 from the left by the name vector of all the

species and from the right by the steady-state flux vector. This

equation can then be written as a reaction by gathering all the

terms with a negative sign left of the reaction arrow and those

with a positive sign to its right. In this way we obtain to obtain

the stoichiometry of the net conversion of the community per

unit X1,

MEQ = − Y
−1
X1/A

(1 + d1/µC)A+

YC/X2
YX2/BYB/X1

(1 + d1/µC)C + X1+

YB/X1
YX2/B

1 + d1/µC

1 + d2/µC

X2 (26)

We consider this macrochemical reaction as the ecological

service of the microbial community. This can, for instance, be

the recycling of a chemical element or the conversion of plant

litter into methane and carbon dioxide, which we work out

in the Appendix.The community conversion (eq. 26) indicates

that A is consumed to make C, X1 and X2. When the death

rate of the first microbe would increase more A is consumed to

produce more C and X2 per unit X1; so the ratio of X2/X1

increases. The carrying capacity of the community equals the

yield coefficients in front of the biomasses (divided by the yield

coefficient of A in case one would like to express the capacity

per unit of the limiting nutrient).

When the community as a whole is not growing in size, i.e.

µC = 0, all microbes have a growth rate that equals their

death rate. The macrochemical equation of the community then

simplifies to

MEQ = − Y
−1
X1/A

A + YC/X2
YX2/BYB/X1

C +
1

2
X1+

1

2
YB/X1

YX2/BX2 (27)

The community conversion will remain constant as long as none

of the two species changes its metabolism in such a way that

its macrochemical equation and net growth rate changes.

Branched microbial communities and branch flux
ratios
Many microbial communities are branched and two or more

species consume the same nutrient, which is the byproduct of

the growth process of (an)other species. An example is shown in

Figure 1B. A branched network can be treated in a similar way

as above, but since we end up with fewer exchanged metabolites
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between species than the number of species we need to add

more information. We will explicitly consider a small example

to make this more clear. (The general case is treated in the

Appendix in terms of some linear algebra properties of the

stoichiometric matrix.)

We consider the following branched network composed out

of 4 species and 2 exchanged nutrients,

A
µ1−−→ B + X1, X1

d1−→ (28)

B
µ2−−→ C + X2, X2

d2−→ (29)

C
µ3−−→ D + X3, X3

d3−→ (30)

C
µ4−−→ E + X4, X4

d4−→ (31)

The following concentration balances exist for the two

metabolic intermediates

dB

dt
= J1,B − J2,B,

dC

dt
= J2,C − J3,C − J4,C (32)

Leading to the the following equations at steady state (using

the same method outlined above),

0 = YB/X1
µ1ϕ1 − Y

−1
X2/B

µ2ϕ2 (33)

0 = YC/X2
µ2ϕ2 − Y

−1
X3/C

µ3ϕ3 − Y
−1
X4/C

µ4ϕ4 (34)

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1. (35)

We aim to determine the four relative abundances. We are

however one equation short (we have 4 ϕ’s but only 3 equations

that relate them) and require an additional relation between

relative abundances to determine the relative abundances of

the species. If we know (by measurement) the community’s

synthesis rate of D and E, then we know their ratio and obtain

a new relation between relative abundances, i.e.

J4,C

J3,C

= R4/3 =
Y −1
X3/C

µ3ϕ3

Y −1
X4/C

µ4ϕ4

⇒ ϕ4 =
Y −1
X3/C

µ3

Y −1
X4/C

µ4R4/3

ϕ3 (36)

This extra relation for the determination of all ϕ’s form a set

of linear equations. The associated equations are shown in the

Appendix.

The net conversion of the community can again be

calculated using the method explained in the previous section.

It depends on the measured flux ratio and the ratio’s of death

rates and growth rates.

Cyclic microbial communities, chemical element
conservation and a cycle law
Since many microbial communities conversions are associated

with the recycling of chemical elements, we also consider a

community that has a cyclic exchange of nutrients between

species, driven by an external thermodynamic driving force.

We consider a 4-species cycle where the first organism feeds on

A, which is recycled by the fourth microbe,

A + E
µ1−−→ X1 + B, X1

d1−→

B
µ2−−→ X2 + C, X2

d2−→

C
µ3−−→ X3 + D, X3

d3−→

D
µ4−−→ X4 + A, X4

d4−→ (37)

As before, we do not show the other nutrients occurring in the

macrochemical reaction which we assume fixed. In this case,

we have four exchanged nutrients and species, corresponding

to the following concentration balances,

dA

dt
= J4 − J1,

dB

dt
= J1 − J2,

dC

dt
= J2 − J3,

dD

dt
= J3 − J4 (38)

Since the sum of these four equations equals 0, we have to

conclude that the following sum of concentrations is conserved

such that at all times the following relation holds: T = A+B+

C + D.

Due to this linear dependency between the concentration

balances, we only have three independent steady-state linear

relations for the fractional abundances and their summation to

1,

0 = YA/X4
µ4ϕ4 − Y

−1
X1/A

µ1ϕ1 (39)

0 = YB/X1
µ1ϕ1 − Y

−1
X2/B

µ2ϕ2 (40)

0 = YC/X2
µ2ϕ2 − Y

−1
X3/C

µ3ϕ3 (41)

1 = ϕ1 + ϕ2 + ϕ3 + ϕ4. (42)

This set of equations is solvable and gives rise to the following

abundance ratios

ϕ2

ϕ1

= YB/X1
YX2/B

µ1

µ2

(43)

ϕ3

ϕ2

= YC/X2
YX3/C

µ2

µ3

(44)

ϕ4

ϕ3

= YD/X3
YX4/D

µ3

µ4

(45)

We can also deduce that since 0 = YA/X4
µ4ϕ4 − Y −1

X1/A
µ1ϕ1,

the following relation holds as well

ϕ1

ϕ4

= YA/X4
YX1/A

µ4

µ1

(46)

Since this equation needs to be in agreement with the

previous abundance ratios, we deduce from the previous derived

ratios that

ϕ4

ϕ1

=
ϕ4

ϕ3

ϕ3

ϕ2

ϕ2

ϕ1

= YB/X1
YX2/BYC/X2

YX3/CYD/X3
YX4/D

µ1

µ4

(47)

and that therefore the following relations holds for the product

of the yields along the cycle,

YA/X4
YX1/AYB/X1

YX2/BYC/X2
YX3/CYD/X3

YX4/D = 1 (48)

To understand how it arose, consider the implication of

this equation that (upon cancellation of all growth rates

and multiplication of the denominator and numerator by the

product of the biomasses)

q4AX4q
1
BX1q

2
CX2q

3
DX3

q1AX1q2BX2q3CX3q4DX4

= 1 (49)

, which is correct since this equals J1J2J3J4/(J1J2J3J4) = 1.

This equation is reminiscent of the detailed balance equations of

that exist for cycles in chemical reaction networks which state

that in thermodynamic equilibrium the net free energy change

is zero.
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