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1 Introduction  

Enzymes catalyse the conversion of carbon and electron source(s) towards biomass and products. Metabolic 

Flux Analysis (MFA) is used for a quantitative calculation of intracellular carbon fluxes from extracellular 

measurements. From the quantitative analysis we can: 

 Characterize the current metabolic state of a system(flux phenotype), 

 See which fluxes are highly active, 

 Understand the interactions in the network – e.g. calculate where cofactors (ATP, NADH, etc.) are 
produced and consumed, 

 Derive metabolic engineering targets – e.g. elimination of by-product forming pathways and increase 
precursor availability. 

The metabolic model can be used for further applications like  

 calculation of theoretical yields  

 prediction of gene knock-out phenotypes. 

Clearly, the use of the model depends on its completeness and its correctness. Nowadays many organisms 

(~ 1600) have been sequenced and annotated opening the possibility for genome scale metabolic networks 

(Figure 1-1). Genome-scale models are available for the most important research strains – S. cerevisiae, 

E. coli, CHO and others. 

 

 

Figure 1-1: Genome scale metabolic modelling is based on the genome sequence, annotation (e.g. 

BLAST search against annotated and curated genomes) and iterative refinement of the reaction 

network by prediction and experimental validation. 
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While small metabolic networks can still be handled ‘by hand’, genome scale models consist of up to 3300 

reactions. Even mid-sized metabolic models (> 30 reactions) are tricky to calculate ‘by hand’, so in this 

module you will learn the basic computational tools to analyse metabolic networks. Throughout this syllabus, 

you will learn the following analyses: 

2. Identify intracellular balances of a metabolic map. 

3. Translate a metabolic map into a ‘Stoichiometric’ matrix. 

4. Basic properties of the metabolic network: 

a. Degree of freedom and type of networks 

b. Blocked reactions 

c. Non identifiable fluxes (internal cycles) 

d. Conserved moieties  

5. Calculation of intracellular fluxes from measurements 

6. Flux Balance Analysis (FBA): optimization techniques to maximize or minimize fluxes. 
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2 Metabolic flux analysis (MFA) – Intracellular balances 

The modelling for MFA starts with balancing all intracellular metabolite pools. An example network is shown 

in Figure 2-1.  

 

Figure 2-1: Example model of a metabolic map. Metabolites are connected by fluxes (vi). 

In the extracellular space we find Glcex, EtOHex, Malex and CO2,ex that are in the liquid phase (we won’t 

consider CO2 in the gas phase for now). The mass balances of the extracellular pools can be obtained based 

on the theory that you learnt during Module 1 (Black box modelling). A fresh reminder, these balances look 

like this: 
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These balances together with measurements of the process allow us to calculate all respective rates (qi). 

However, this was already done in Module 1.  
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Now, in the intracellular space we find G6P, Pyr, Cit, Mal, aKG and CO2. The balance of the intracellular pools 

can be derived from the reaction network: 
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Note that the balance for Pyr includes 2*V2 as indicated in the metabolic map. The left hand side of these 

balances can be expressed by a vector dMet/dt: 

 
26

, , , , ,

T
dMet dG P dPyr dCit daKG dMal dCO

dt dt dt dt dt dt dt

 
  
 

 (3) 

 

The metabolism is now driven to steady-state conditions, e.g. by cultivation in a chemostat. In steady-state, 

concentrations and associated fluxes are not changing and Eq. (2) changes from a set of differential 

equations into a set of linear equations for reaction rates: 

 

1 2

2 3 6 9

3 4

4 5

5 6 3 7

4 5 9 6 8

0

0

0

0

0

2

0

v v

v v v v

v v

v v

v v v v

v v v v v
 (4) 

Independent of the type of reaction and network such linear equation systems are always obtained. These 

can be formulated conveniently using matrix algebra. Therefore, we define a vector containing the unknowns 

(fluxes) v:  

  1 2 3 4 5 6 7 8 9, , , , , , , ,
T

v v v v v v v v vv  (5) 
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3 Metabolic flux analysis (MFA) – Define a ‘Stoichiometric’ matrix 

Having defined these vectors, the equations in the balances (2) can be rewritten using matrix calculus. This 

is also called a Stoichiometric matrix (mainly represented with the symbol S). This matrix shows the relations 

between metabolites and fluxes. For the example in (2), the corresponding S matrix would look like this: 

  (6) 

The rows in the matrix S represent the balances of intracellular metabolites, the columns represent the 

reactions. The values represent the stoichiometric coefficients of the particular reaction. The matrix has to 

be written in the order of the defined vectors v and dx/dt. Having this matrix the equation system in Eq. (2) 

can now be rewritten as: 

 
d

dt


x
S v  (7) 

At steady state, this simplifies to: 

 0 Sv  (8) 

Equation (8) is the basic constraint of these types of models. For this reason, most metabolic models that 

consider the steady state assumption are also called ‘constraint based models’. 

To analyse the properties of this system, different calculations should be performed. This is the topic of the 

following subchapter.  
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4 Basic properties of a metabolic model 

Now you know how to build a basic stoichiometric matrix by balancing the intracellular metabolites of a 

metabolic network together with the reactions (sometimes referred to as fluxes). This can be done with any 

type of reaction network, however it is very important to analyse the properties of the system before moving 

into more complicated analyses.  

 

4.1 Degrees of freedom and type of system 

The degree of freedom of the system reflects the amount of ‘free’ variables that can be changed 

independently. A low number (e.g. 1 or 2) indicates that the network is very ‘rigid’ – two fluxes are enough 

to define the whole network function.  

The degrees of freedom (ndf) are calculated from the number of fluxes to be determined ( size of v ) and the 

number of equations without redundancies or dependencies (number of metabolites that are independent). 

The independent metabolites (rows of S) can be calculated by analysing the rank of the matrix ( rank(S) ).  

    dim rankdfn  v S  (9) 

In the example presented in equation (6), a total of 9 fluxes are present and the rank is 6 (because all 

metabolites are independent). Thus, there are 3 degrees of freedom. This number is also very relevant for 

the calculation of fluxes – to determine the network fluxes at least ndf measurements are needed. You will 

learn how to exactly determine dependencies between fluxes or metabolites in the following sections 

(redundant systems and conserved moieties). 

Based on the degrees of freedom and available measurements, metabolic networks can be classified (Klamt 

et al. 2002).  

 Underdetermined: measured rates < ndf  ;  there are not enough linearly independent constraints 

for computing all rates of v, uniquely. 

Determined: measured rates  = ndf  ;  there are enough linearly independent constraints for 

computing all rates of v uniquely. 

 Redundant: measured rates > ndf  ;  There are more measurements than degrees of freedom which 

would directly solve the system. This type of cases does not appear with the kind of systems in (6), 

but appears when multiple metabolite balances are dependent on each other. These kind of systems 

are not possible to be solved. 

Although this classification seems straightforward, there are multiple special cases that might lead to 

combinations of the types of systems. These special cases arise when there are subsystems in the network 

that lead to either a redundancy or an underdetermined system, while the overall system can be classified 

differently. For example, there are cases of networks that can be underdetermined as a whole but redundant 

within an internal cycle at the same time.   
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4.2 Blocked reactions 

Suppose we have the following metabolic network: 

 

Figure 4-1: Example model of simple metabolic network that is redundant and underdetermined. 

This reaction network has two observable problems. First, the system is underdetermined for v2 and v3. If 

we measure 2 rates (say v1 and v4), the information does not allow us to calculate a solution on the flux 

distribution to v2 or v3. These can basically take any value. 

Additionally, the system is redundant for v1 and v4. The flux of v1 should be equal to the flux of v4, so 

measuring both rates would be of no use to solve the system. 

For the system on Figure 4-1, we can study the so called ‘spanning vectors’, which indicate the possible 

combination of solutions of the network. The spanning vectors are obtained by doing a null space analysis 

of the stoichiometric matrix (S). In the specific case, we would obtain the following: 

 

Figure 4-2: Spanning vectors obtained from the null space analysis of metabolic network in Figure 4-1. 

The resulting vectors show the possible combinations of solutions, and those solutions are further 

represented to the right. 

In the example, all the rows (representing fluxes) of the null space analysis have all at least one non-zero 

entry. This indicates that all the fluxes could potentially contribute to the solution of the system of equations.  



 

 LM3432 Analysis of Metabolic Networks, rev: 12/7/2022 Page 9 of 32 

 

Now, we will expand the information on the previous network by adding cofactors involved in the reactions. 

When this information is added, the resulting null space indicates only one combination of fluxes leading to 

a solution. 

 

 

Figure 4-3: (Left) Metabolic network including cofactor use. (Right) Spanning vector resulting from the 

null space analysis of the stoichiometric matrix. 

Now that more information has been added to the system, the null space analysis indicates only one possible 

combination of fluxes that could exist as part of the solution. In this case, the 3rd row has a 0 entry, which 

indicates that this flux will always be 0 regardless of the values of the other fluxes. The specific reason for 

v3 to be a blocked reaction in this case is that it uses a metabolite (NADPH) and produces another one 

(NADP) that are not produced or consumed by any other reactions of the network. Taking into account 

equation (8) assuming steady state, this flux would not be possible. 

This is a blocked reaction, and the way to identify them is by applying the null space analysis of S and 

searching for zero entries. Below you can find the Python code used to calculate blocked reactions.  

Work with the jupyter notebook file 

You can work with this example in Python (Jupyter notebook format) on Brightspace (M2_basic_properties).  

 

This script has been compiled as a function called check_blocked_reacations(S, v_lab); and will be 

uploaded to the functions file on brightspace. 
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4.3 Non-identifiable fluxes 

Another important property of a metabolic network is the presence of fluxes that are non-identifiable 

considering the current measured rates. This is very common when dealing with internal cycles that can run 

at any flux independently from the external fluxes of the system. It does not mean that the reactions of the 

cycle are correct or wrong, but it means that the fluxes obtained from a solution will not be unique. Identifying 

these fluxes can guide us to perform additional measurements to gain insights on these measurements.  

Let us consider the example of the network from Figure 4-1 (without involvement of cofactors). The system 

is composed of 4 variables (rates) and 2 metabolites. Thus, it is assumed that by measuring two fluxes we 

can solve the system. And as we analysed previously, flux v1 should be equal to flux v4.  

To define the internal cycles, we will add a measurement of v1 to be equals to 0 by extending the S matrix 

with an additional row (also called matrix C) indicating the measured fluxes as follows: 

(10) 

 

The system of equations from (10) represents a network in which no external input is given (in this case v1 

and v4 are 0). Similarly as done with the blocked reactions analysis, we now perform a null space analysis of 

the (S; C) matrix and analyse the obtained spanning vectors.  

  (11) 

The resulting vector shows that there is a solution of the system where not all fluxes are 0. This is strange, 

because the system doesn’t receive any input, but it indicates that the fluxes v2 and v3 form the internal cycle 

that was mentioned earlier. Thus, these are fluxes that cannot be identified by measuring external fluxes v1 

or v4.  

The way to find non-identifiable reactions is by applying the null space analysis of (S; C) and searching for 

non-zero entries. Below you can find the Python code used to identify these reactions.  

Work with the jupyter notebook file 

You can work with this example in Python (Jupyter notebook format) on Brightspace (M2_basic_properties).  



 

 LM3432 Analysis of Metabolic Networks, rev: 12/7/2022 Page 11 of 32 

 

 

 

In practice, the networks to be studied are much larger than the one used in this example. Hence, the 

method needs to be adjusted to constrain all external fluxes to be 0 (not just v1 as in the example). This can 

be done easily by identifying metabolites in the S matrix that contain either only one producing reaction or 

only one consuming reaction. This can be done as indicated in the Python code below: 
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This script has been compiled as a function called internal_cycles(S, v_lab); and will be uploaded to the 

functions file on brightspace. 
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4.4 Conserved moieties 

A moiety is defined as each of two parts into which something is composed of. In our case, a conserved 

moiety is easily observed when dealing with ‘cofactor’ pairs, such as NADH and NAD+, NADPH and NADP+, 

ATP and ADP, etc. These cofactors are not always conserved moieties and identifying when such a case 

occurs is important. 

The presence of conserved moieties in an S matrix does not lead to problems of non-solvability, blocked 

reactions or internal cycles. It is only redundant information that is not useful for finding a solution and can 

be removed. Using the example from Figure 4-3, but with only NADH (not NADPH) to solve the blocked 

reactions problem, we obtain the following network: 

 

Figure 4-4: Metabolic network including cofactor use of NADH. 

From observing Figure 4-4, you can directly identify the relationship between NADH being consumed and 

NAD being produced. That is a conserved moiety, because an S matrix containing the information of both 

metabolites would not add any new information. But are there more conserved moieties in this network?  

Similarly as what was done to identify blocked reactions, we now need to analyse the null space of the S 

matrix, but the transposed version (ST). This is done because by analysing the null space, we can identify 

linear dependencies between columns of ST (also known as metabolite balances or rows of S). The resulting 

null space matrix contains the combinations of balances (of metabolites) that are linearly dependent. For the 

example network:  
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Figure 4-5: (Left) Transposed stoichiometric matrix and balances. (Right) Null space analysis of the 

transposed S matrix (ST) gives information on the two linear dependencies observed in the network.  

From the analysis in Figure 4-5, we identify two conserved moieties in the system. Surprisingly, the balance 

for metabolite ‘D’, forms a conserved moiety with NADH (1*D + 1*NADH = 0) and also with NAD (-1*D + 

1*NAD = 0). Based on this information, the system would remain unchanged if we remove the row for 

metabolite D in the S matrix.  

In short, the method used to identify conserved moieties is by applying the null space analysis of (ST) and 

searching for dependencies. Below you can find the Python code used to identify these moieties.  

Work with the jupyter notebook file 

You can work with this example in Python (Jupyter notebook format) on Brightspace (M2_basic_properties).  

 

At this point, you can remove the row matrix for the metabolite balance that is redundant. The presence of 

this balance will not interfere with solving the system, but it is redundant information and removing it makes 

the analysis easier and in some times computationally faster. 

We also provide a set of functions in python named conserved_moieties(S, m_lab) to check for conserved 

moieties. You can find this function in the functions file on Brighstpase. 

4.5 Elementary Flux Modes Analysis (EFMA) 

Elementary Flux Modes Analysis (EFMA) is a promising tool in metabolic flux analysis. It allows to decompose 

a given metabolic network into minimal functional units. In other words, it allows the calculation of all possible 

unique solutions to a network while maintaining steady state assumption (S.v = 0). Each Elementary Flux 

Mode (EFM) resulting from this analysis is unique in the sense that: 

- All the reactions in the solution are essential (i.e. cannot be removed without disrupting this 

solution). 
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- Each individual EFM cannot be written as the superposition of other EFMs.  

An example of EFMA can be seen in Figure 4-6.  

 

Figure 4-6: EFMA of a ‘toy’ metabolic model consisting of 3 metabolites interconnected with 5 

reversible reactions.  

How can we identify all the EFMs of a metabolic model? Well, it turns out that this calculation is 

computationally demanding, especially considering the combinatorial effect that each new reaction will add 

to the potential solutions. It can be calculated manually though; by systematically eliminating reactions from 

the network until the steady state condition breaks, you arrive to one EFM. Repetition of this elimination 

covering all possible reactions will yield the final result. Of course, this calculation is impossible with large 

scale models. Just as an example, a medium-scale metabolic model for central carbon metabolism (containing 

around 100 reactions) contains up to 272 million EFMs!  

For relatively smaller-scale models, EFMA can be performed and could give important information on a 

biological system. Because any given phenotype (observed experimental rates) will be a consequence of one 

EFM or the superposition of several EFMs, similarly the metabolic potential of a microorganism can be 

explored in silico, and aid with the identification of metabolic engineering strategies.  

Different tools are available to perform EFMA on metabolic models. The most widely used of these algorithms 

is called “efmtool” developed by Terzer, M., Stelling, J. (2008)1.  

 

  

                                           

1 Large scale computation of elementary flux models with bit pattern trees. Bioinformatics 2008. 24, 2229-
2235. 
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5 Calculation of the intracellular fluxes from measurements 

 

 

Figure 5-1: Example model used for MFA and FBA calculations. Fluxes v1 and v4 are reversible 

reactions. 

Equation (8) (Sv = 0) represents the stoichiometry of the network and its solution(s) valid flux distribution(s) 

of the intracellular reaction network considering that all metabolites are in steady state.  

Please note that all examples are now based on the network in Figure 5-1. 

To estimate the unknown intracellular fluxes from available measurement data these have to ‘enter’ the 

variables in Eq. (8). Thus there has to be a ‘coupling’ between the q-rates and the intracellular fluxes. Again, 

first of all, a vector (q) containing all measurements is defined. For the example network a set of 3 fluxes 

was measured.  

  , ,
T

S H Fq q qq  (12) 

Now, a coupling is defined by adding the equations needed, which are: 

 
5

7

2

upt S

H

F

v q

v q

v q

 





 (13) 

This information is now added to the equation system (8) by adding the equations. To achieve this a 

measurement matrix S is constructed mapping the intracellular fluxes to the available measurements q. For 

the current example, this gets: 
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The stoichiometric relations (Eq. (8)) and the measurement equations are now combined: 

 
0   

   
   

S
v

q M
 (15) 

If the measured fluxes were non-redundant now a quadratic matrix with full rank (rank(S M)T=8) should be 

obtained. If this is not the case, following distinctions can be made: 

rank(S M)T = dim(v): determined system, everything ok. 

rank(S M)T < dim(v): under-determined system, 

No calculations possible – there are redundancies in the measurements  

rank(S M)T > dim(v): over-determined system  

You have more measurements than needed 

Now, taking into consideration the metabolic network from Figure 5-1, we will introduce examples when 

available measured rates result in a determined, over-determined and under-determined systems. Before we 

deep into each example, we need to define the model (build S matrix, define fluxes and metabolites).  

 

 

 

 

 

 

 

 



 

 LM3432 Analysis of Metabolic Networks, rev: 12/7/2022 Page 18 of 32 

 

 

Work with the jupyter notebook file 

You can work with this example in Python (Jupyter notebook format) on Brightspace (M2_Flux_Analysis).  
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5.1 Determined case 

Because a system of full rank is available, the inverse calculation of Eq. (14) simply gets: 

 

1
0



   
    
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S
v

M q
 (16) 

From this equation the intracellular fluxes v are obtained from the uptake and production rates (vector q).  
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5.2 Error propagation 

A closer look at (16) tells much more. Besides the value also their sensitivity – that is the influence of 

experimental errors in q on the estimation of v. Deriving a linear equation with respect to the variable (here 

q) gives its sensitivity. For a linear system like here the sensitivity is just 

1

 
 
 

S

M
. This is very important 

information as you can read which measurements are sensitive – thus which measurements contain 

information on fluxes and which measurements do not.  

Biological measurements usually contain errors – the q rates are determined with a certain accuracy which 

is mostly quantified using standard deviations. But, how do these errors influence the accuracy of the 

estimated fluxes? What is the standard deviation of a calculated intracellular flux?  

With the sensitivity matrix in hand this is a straightforward step using error propagation. For this, the 

measurement errors are described in a covariance matrix. This matrix contains on the diagonal the variance 

(square of the std. dev.) and covariances on the off-diagonals. If the measurement methods are independent 

(thus do not influence each other) which is often the case, the covariance matrix simplifies to a diagonal 

matrix with the variances on the diagonal. For the running example: 
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q  (17) 

The std. dev. can then be calculated using error propagation: 

     
1 1

cov cov cov

T

diag

       
              

v

S 0 S
v σ v

M q M
 (18) 

Note, that the stoichiometric relations are determined without any error, thus for each balance, a zero on 

the diagonal of the covariance matrix has to be added before the variance of q are placed (cov(0; q) ). In 

the running example, a standard deviation of 0.1 from the measured q rates is assumed: 



 

 LM3432 Analysis of Metabolic Networks, rev: 12/7/2022 Page 21 of 32 

 

 

With the information obtained, we can make the following observations: 

1. All given rates are matched (v_upt=-qS=-1, v5=0.5 qH=0.15, v7 = qF = 0.2) 

2. There is production of K (v6 = 0.675) 

3. The standard deviation of v5 is half the standard deviation of qH (stoichiometry 2 v5 == qH ) 

4. The off-diagonal elements of cov_v are not 0 – because of the network connections, correlation is 
observed – the intracellular fluxes depend on all measurements thus there is cross-influence.  

5. v6 is most inaccurate estimated, looking at the absolute std. deviation (=0.135). 

6. v4 and v5 most accurately (direct coupling v4=v5) 

7. v1, v2, v3 a bit less as their value also depends on the other measurements 

With v6 being badly determined it might be better to measure this one. Maybe qS, qH, qF was not the best 

choice of measurements. 
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In the next calculation the same flux distribution is present but instead of qH, qK is measured: 

 

Now v5 is better determined (=0.1), but v7 got much worse (=0.32). Thus each set of measurements 

seems to have its weakness. Therefore it would be of advantage if all available measurements, instead of a 

subset of only 3 (independent) ones would be used. 

Adding a fourth measurement leads to a redundant equation system (9 equations, but only 8 variables).  
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5.3 Redundant information 

Solving a system with more measurements is different. Because the measurements are error-prone it is not 

possible to exactly reproduce the measurements. A compromise has to be found on which measurements  to 

trust more and find a flux distribution that is as close as possible to ALL measurements. The criteria ‘as close 

as possible’ is usually expressed using the sum of squares – this is the sum of the squared difference between 

model calculation (v) and the measurements (w). Because measurements accuracy can vary strongly for 

different metabolites (e.g. glucose can be measured very precisely while the CO2 content in the off gas is 

more error prone) it is necessary to ‘weight’ the difference with the accuracy. A deviation from a precise 

measurement ( = 0.1) should have a bigger value in the sum of squares than the same deviation from an 

imprecise (=1) measurement. This is achieved by weighting with respect to the standard deviation: 

 

2

,2
m

i m i

i i i

SSQ 


 
   

 
 


q q

 (19) 

With the covariance matrix (Eq. (17)), Eq. (19) can be rewritten as: 

    2 1cov ( )
T

   q q q q q  (20) 

Now, a good estimation of fluxes has to be found. The closest solution is given by reaching the minimum of 
2 . The fluxes fulfilling these criteria are the best estimations v̂ . At the same time, the stoichiometry of the 

network has to be fulfilled. Thus the optimization problem is (minimize 
2  by modifying the fluxes v and 

fulfilling the stoichiometry S v=0): 

 
2ˆ arg min( ), subject to:

v
 v S v 0  (21) 

This is similar to the solution of equations from module 1. One set has to have an exact solution, the other 

one the least-square solution. We can apply the Lagrange approach: 

 

T T T

Lagrangemultipliers m

 



     
           q

S v 0 qM q M M E

M v q 0 E 0

L

 (22) 

With this reduction, the least-squares solution is obtained by:  

 1

T




  

   
   

v M
L

0
 (23) 

  



 

 LM3432 Analysis of Metabolic Networks, rev: 12/7/2022 Page 24 of 32 

 

With now the complete set of measurements taken into account: 

 

Including also the error propagation: 

  

The use of all available measurements now leads to an estimation with smaller standard deviations than the 

actual measurements. That increase in accuracy is reached from the redundancy. 

5.4 Underdetermined case: q-rates give insufficient information 

In case that less rates than necessary for the degrees of freedom are measured or the system contains 

intracellular cycles that cannot be observed from the extracellular measurements, additional constraints have 

to be generated. This can be done by i) adding more measurement information by 13C tracer experiments. 

ii) Assume certain reactions to be inactive, iii) impose an optimization criteria. 

Approach i) is most complex and will not be treated here, ii) is trivial (reducing the stoichiometric matrix 

columns by eliminating fluxes) leaving us with iii) optimization. 
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The basic idea is to fill missing constraints by defining a goal of metabolism and finding the optimum flux 

distribution to fulfil this goal (within the given information). 

Different criteria can be defined (see Table 3-1). Commonly it is assumed that the organism tries to grow as 

efficient as possible – thus, the biomass yield is optimal. 

Mathematically, optimization is solved by applying linear programming. For this calculation, it is important to 

define equality constraints (for example S.v = 0, M.v = q) and inequality constraints. This term is new, 

and in metabolic flux analysis it is mainly used to define reactions that only run in one direction (e.g. 

irreversible reactions). For example, models typically include a maintenance reaction consuming ATP. If this 

reaction runs in the opposite direction, it would generate free ATP out of nothing (against the second law of 

thermodynamics), hence this flux must always be > 0. We can define these reactions by using a vector 

indicating irreversible reactions (virr). The optimization can therefore be formulated as: 

  
=

ˆ arg max subject to =qT




 
 

v

irr

S v 0

v c v M v

v 0

 (24) 

The vector multiplication cT v is called target function (e.g. optimal flux of producing a metabolite of interest 

as a linear combination of v). Assuming that our metabolic model contains a reaction to produce biomass, 

when optimizing for the ‘c’ vector will contain one entry ‘1’ at the position of  in the flux vector similar to 

what was done with the matrix M. 

Because the uptake is usually known, when we optimize for specific fluxes in a metabolic model (say ethanol 

(qp) or biomass production ()), we are indirectly optimizing for the yield (Yps and Yxs respectively) and not 

for the rates. 

This approach solves the problem of non-identifiably using an elegant mathematical trick. Nevertheless, care 

has to be taken with these results. The criteria sound logical, but it is not known whether the analysed 

organism under the analysed condition really follows this criteria. Certain fluxes might be unrealistically high. 

You could perform further experimentation (13C label experiments) to prove your obtained solutions. Another 

approach (we will learn this in Module 3) is to apply thermodynamic analyses to the fluxes under specific 

conditions. 
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Table 3-1: Commonly used objective (target) functions for setting optimization criteria when not 

enough constraints are available. 
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6 Flux Balance Analysis (FBA) - theoretical yields 

Linear programming is most often applied to calculate theoretical yields based on a given network. Therefore, 

the production flux is optimized: 

  opt

=

arg max subject to =T




 
 

v

irr

S v 0

v c v M v w

v 0

 (25) 

The term M v = w reduces to one line constraining the uptake flux (usually normalized, vupt = 1). Linear 

programming is part of the scipy.optimize library– looking at the output of help linprog: 

 

From the documentation of linprog we see that all constraints – equality as well as inequality – can be 

specified. Nevertheless, instead of maximization linprog minimizes. Thus, the maximization has to be 

reformulated as minimization problem while keeping the system linear. This is achieved by multiplying the 

objective flux with -1.  
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As an example, let’s maximize the flux to H (v5) in the example network: 

Work with the jupyter notebook file 

You can work with this example in Python (Jupyter notebook format) on Brightspace (M2_FBA).  

 

upt = 1  

v1 = 0.333333  

v2 = 0.333333  

v3 = 0.333333  

v4 = 0.666666  

v5 = 0.666666  

v6 = 2.25057e-08  

v7 = 6.56831e-09  

It is seen, that a maximal yield of 0.666 can be achieved. No by-products (K, F) are formed at the optimal 

flux distribution.  
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6.1 Including additional constraints 

Frequently, to study the impact of certain reactions in the network, variation studies are performed – most 

of the times called “parameter sweeps”, i.e. analysing the influence of one parameter on the outcome of the 

calculation (here optimization). 

Let’s assume, we want to analyse if v2 of the current network is a putative bottleneck. We vary this flux 

between v2 = 0 .. 1 and observe v5 as a function of this flux. 

 

 

Flux v5 is clearly dependent on the intracellular flux v2. The optimum of v5 = 0.66 can only be obtained 

when the intracellular flux v2 is 0.33.  
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In the range from v2 = 0 to 0.33, the slope is 2, which is easily explained by the requirement of v4 for 

metabolite F. F is produced in the cycle v2,v3 generating 2 F, clearly observed with flux v6 as a function of 

v2. 

When going beyond 0.33, the bottleneck is the split between v1 and v4 – the precursor B can be used for 

making F (via v1, v2, v3), or H via v4 (which needs F). One B less, makes one H less, explaining the slope 

of -1. Surplus F is then excreted via v7.  
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